Постоянная память (пзу). Постоянные запоминающие устройства Постоянно запоминающее устройство служит для хранения чего

электронное вычислительное устройство для обработки чисел;
устройство для хранения информации любого вида;
многофункциональное электронное устройство для работы с информацией;
устройство для обработки аналоговых сигналов.
2. Производительность работы компьютера (быстрота выполнения операций) зависит от:
размера экрана монитора;
тактовый частоты процессора;
напряжения питания;
быстроты нажатия на клавиши;
объема обрабатываемой информации.
3. Тактовая частота процессора - это:
число двоичных операций, совершаемых процессором в единицу времени;
количество тактов, выполняемых процессором в единицу времени;
число возможных обращений процессора к оперативной памяти в единицу времени;
скорость обмена информацией между процессором и устройством ввода/вывода;
скорость обмена информацией между процессором и ПЗУ.
4. Манипулятор "мышь" - это устройство:
ввода информации;
модуляции и демодуляции;
считывание информации;
для подключения принтера к компьютеру.
5. Постоянное запоминающее устройство служит для:
хранения программы пользователя во время работы;
записи особо ценных прикладных программ;
хранения постоянно используемых программ;
хранение программ начальной загрузки компьютера и тестирование его узлов;
постоянно хранения особо ценных документов.
6. Для долговременного хранения информации служит:
оперативная память;
процессор;
магнитный диск;
дисковод.
7. Хранение информации на внешних носителях отличается от хранения информации в оперативной памяти:
тем, что на внешних носителях информация может хранится после отключения питания компьютера;
объемом хранения информации;
возможность защиты информации;
способами доступа к хранимой информации.
8. Во время исполнения прикладная программ хранится:
в видеопамяти;
в процессоре;
в оперативной памяти;
в ПЗУ.
9. При отключении компьютера информация стирается:
из оперативной памяти;
из ПЗУ;
на магнитном диске;
на компакт-диске.
10. Привод гибких дисков - это устройство для:
обработки команд исполняемой программы;
чтения/записи данных с внешнего носителя;
хранения команд исполняемой программы;
долговременного хранения информации.
11. Для подключения компьютера к телефонной сети используется:
модем;
плоттер;
сканер;
принтер;
монитор.
12. Программное управление работой компьютера предполагает:
необходимость использования операционной системы для синхронной работы аппаратных средств;
выполнение компьютером серии команд без участия пользователя;
двоичное кодирование данных в компьютере;
использование специальных формул для реализации команд в компьютере.
13. Файл - это:
элементарная информационная единица, содержащая последовательность байтов и имеющая уникальное имя;
объект, характеризующихся именем, значением и типом;
совокупность индексированных переменных;
совокупность фактов и правил.
14. Расширение файла, как правило, характеризует:
время создания файла;
объем файла;
место, занимаемое файлом на диске;
тип информации, содержащейся в файле;
место создания файла.
15. Полный путь файлу: c:\books\raskaz.txt. Каково имя файла?
books\raskaz;.
raskaz.txt;
books\raskaz.txt;
txt.
16. Операционная система это -
совокупность основных устройств компьютера;
система программирования на языке низкого уровня;
программная среда, определяющая интерфейс пользователя;
совокупность программ, используемых для операций с документами;
программ для уничтожения компьютерных вирусов.
17. Программы сопряжения устройств компьютера называются:
загрузчиками;
драйверами;
трансляторами;
интерпретаторами;
компиляторами.
18. Системная дискета необходима для:
для аварийной загрузки операционной системы;
систематизации файлов;
хранения важных файлов;
лечения компьютера от вирусов.
19. Какое устройство обладает наибольшей скоростью обмена информацией:
CD-ROM дисковод;
жесткий диск;
дисковод для гибких магнитных дисков;
оперативная память;
регистры процессора?

Постоянное запоминающее устройство служит для:

а) хранение программ начальной загрузки компьютера и тестирования его узлов

г) записи особо ценных программ

1. Программный продукт, включающий несколько однофункциональных взаимосвязанных программ называется: а) интелектуальной системой б)

интегрированной системой

в) интерпритатором

г) операционной системой

2. Постоянное запоминающее устройство служит для:

а) хранения программ начальной загрузки компьютера и тестирования его узлов

б) хранения программы пользователя во время работы

в) хранения постоянно используемых программ

г) записи особо ценных прикладных программ

3. Программы, управляющие оперативной памятью, процессором, внешними устройствами и обеспечивающие возможность работы других программ, называют:

а) драйверами

б) утилитами

в) операционными системами

г) системами программирования

4. Среди названных ниже характерных режимов для различных редакторов укажите тот, в котором осуществляется сохранение созданного и отредактированного текста:

а) режим работы с файлами

б) режим ввода-редактирования

в) режим поиска по контексту и замены

г) режим орфографического контроля

5. База данных "Зоопарк" содержит в полях Животное, Тип, Кол-во сведения о наименований животного, типе его рациона (плотоядное и травоядное) и количестве пищи, выдаваемой в день. Составить запрос, для получения информации о животных, съедающих в день от5 до 10кг мясных продуктов.

1 В состав основных устройств ЭВМ входят...

Монитор, системный блок, клавиатура, "мышка"

Память, центральный процессор, устройства ввода и вывода

Центральный процессор, видеомонитор, клавиатура

Дисковод, принтер, монитор, системный блок

2 К характеристике ЭВМ НЕ относится

ёмкость памяти

Надежность

Стоимость

Долговечность

3 За единицу измерения кол-ва информации принят:

4 Правильный порядок возрастания единиц измерения информации

Байт, Кбайт, Мбайт, Гбайт

Бит, байт, Гбайт, Кбайт

Кбайт, Гбайт, Мбайт, байт

Байт, Мбайт, Кбайт, Гбайт

5 Современный компьютер - это

Устройство для обработки текстов

Многофункциональное устройство для работы с информацией

Быстродействующее вычислительное устройство

Устройство для хранения информации

6 Из какого устройства процессор выбирает команды

Клавиатуры

Внешних запоминающих устройств

Оперативной памяти

Дисплея

7 Память ЭВМ служит для:

Хранения программ

Хранения программ и данных

Обработки данных

Хранения данных и выполняемой программы

8 Основная функция центрального процессора

Управление вычислительным процессом

Обработка данных

Обработка данных и управление вычислительным процессом

Хранение и передача результата работы программы

9 К устройству ввода НЕ относится

Клавиатура

Принтер

Дисковод

10 Что НЕ является основным устройством ЭВМ

Центральный процессоp

Видеоадаптер

Устройства ввода-вывода

Постоянное запоминающее устройство (ПЗУ) – ЗУ, предназначенное для хранения неизменяемой информации (программ, констант, табличных функций). В процессе решения задач ПЗУ допускает только чтение информации. В качестве характерного примера применения ПЗУ можно указать БИС ПЗУ, используемые в РС для хранения BIOS (Basic Input Output System – базовой системы ввода-вывода).

В общем случае накопитель ПЗУ (массив его запоминающих ячеек) емкостью ЕПЗУ слов, длиною в r + 1 разрядов каждое, обычно представляет собой систему из ЕПЗУ горизонтальных (адресных) и r + 1 вертикальных (разрядных) проводников, которые в точках пересечения могут быть соединены элементами связи (рис. 1.46). Элементы связи (ЭС) – это плавкие вставки или p -n -переходы. Наличие элемента связи между j -м горизонтальным и i -м вертикальным проводниками означает, что в i -м разряде ячейки памяти номер j записана единица, отсутствие ЭС означает, что здесь записан нуль. Запись слова в ячейку номер j ПЗУ производится должной расстановкой элементов связи между разрядными проводниками и адресным проводом номер j . Чтение слова из ячейки номер j ПЗУ происходит так.

Рис. 1.46. Накопитель ПЗУ емкостью ЕПЗУ слов, длиною в r + 1 разрядов каждое

Код адреса A = j дешифрируется, и на горизонтальный проводник номер j накопителя подается напряжение от источника питания. Те из разрядных проводников, которые соединены с выбранным адресным проводником элементами связи, оказываются под напряжением U 1 уровня единицы, остальные разрядные проводники остаются под напряжением U 0 уровня нуля. Совокупность сигналов U 0 и U 1 на разрядных проводниках и образует содержимое ЯП номер j , а именно слово по адресу А .

В настоящее время ПЗУ строят из БИС ПЗУ, у которых используются полупроводниковые ЭС. БИС ПЗУ принято делить на три класса:

– масочные (МПЗУ);

– программируемые (ППЗУ);

– репрограммируемые (РПЗУ).

Масочные ПЗУ (ROM – от Read Only Memory) – ПЗУ, информация в которые записывается с фотошаблона в процессе выращивания кристалла. Например, БИС ПЗУ 555РЕ4 емкостью 2 кбайта представляет собою генератор символов по коду КОИ-8. Достоинством масочных ПЗУ является их высокая надежность, а недостатком – низкая технологичность.

Программируемые ПЗУ (PROM – Programmable ROM) – ПЗУ, информация в которые записывается пользователем при помощи специальных устройств – программаторов. Данные БИС изготавливаются с полным набором ЭС во всех точках пересечения адресных и разрядных проводников. Это повышает технологичность таких БИС, а значит, и массовость в производстве и применении. Запись (программирование) информации в ППЗУ производится пользователем по месту их применения. Делается это путем выжигания элементов связи в тех точках, в которых должны быть записаны нули. Укажем, например, на ТТЛШ-БИС ППЗУ 556РТ5 емкостью 0,5 кбайт. Надежность БИС ППЗУ ниже, чем у масочных БИС. Перед программированием их необходимо тестировать на наличие ЭС.

В МПЗУ и ППЗУ невозможно изменять содержимое их ЯП. Репрограммируемые ПЗУ (РПЗУ) допускают многократную смену хранимой в них информации. Фактически РПЗУ – это ОЗУ, у которых t ЗП>>t ЧТ. Замена содержимого РПЗУ начинается со стирания хранившейся в нем информации. Выпускаются РПЗУ с электрическим (EЕPROM) и ультрафиолетовым (UVEPROM) стиранием информации. Например, БИС РПЗУ с электрическим стиранием КМ1609РР2А емкостью 8 кбайт может перепрограммироваться не менее 104 раз, хранит информацию не менее 15000 ч (около двух лет) во включенном состоянии и не менее 10 лет – в выключенном. БИС РПЗУ с ультрафиолетовым стиранием К573РФ4А емкостью 8 кбайт допускает не менее 25 циклов перезаписи, хранит информацию во включенном состоянии не менее 25000 ч, а в выключенном – не менее 100000 ч.

Основное назначение РПЗУ – использование их вместо ПЗУ в системах разработки и отладки программного обеспечения, микропроцессорных системах и других, когда приходится время от времени вносить изменения в программы.

Работу ПЗУ можно рассматривать как однозначное преобразование N -разрядного кода адреса А в n -разрядный код считываемого из него слова, т.е. ПЗУ является преобразователем кода (цифровым автоматом без памяти).

На рис. 1.47 показано ус­ловное изображение ПЗУ на схемах.

Рис. 1.47. Условное изображении ПЗУ

Функциональная схе­ма ПЗУ приведена на рис. 1.48.

Рис. 1.48. Функциональная схема ПЗУ

По принятой в среде специалистов по запоми­нающим устройствам терминологии входной код называется адресом, 2n вертикальных шин – числовыми линейками, m выходов – разрядами храни-мого слова. При поступлении на вход ПЗУ любого двоичного кода всегда выбирается одна из числовых линеек. При этом на выходе тех элементов ИЛИ, связь которых с данной чис­ловой линейкой не разрушена, появляется 1. Это значит, что в данном разряде выбранного слова (или числовой ли­нейки) записана 1. На выходах тех разрядов, связь кото­рых с выбранной числовой линейкой выжжена, останутся нули. Закон программирования может быть и инверсным.

Таким образом, ПЗУ – это функциональный узел с n входами и m выходами, хранящий 2n m -разрядных слов, которые при работе цифрового устройства не изменяются. При подаче на вход ПЗУ адреса на выходе появляется со­ответствующее ему слово. При логическом проектировании постоянное ЗУ рассматривают или как память с фиксиро­ванным набором слов, или как кодовый преобразователь.

На схемах (см. рис. 1.47) ПЗУ обозначается как ROM. Постоян­ные запоминающие устройства обычно имеют вход разре­шения Е. При активном уровне на входе Е ПЗУ выполняет свои функции. При отсутствии разрешения выходы микро­схемы неактивны. Разрешающих входов может быть не­сколько, тогда микросхема отпирается по совпадению сиг­налов на этих входах. В ПЗУ сигнал Е часто называют чте­нием ЧТ (read), выбором микросхемы ВМ, выбором кристалла ВК (chip select – CS).

Микросхемы ПЗУ приспособлены для наращивания. Чтобы увеличить число разрядов хранимых слов, все входы микросхем включают параллельно (рис. 1.49, а ), а с увеличившегося суммарного числа выходов снимается выход­ное слово соответственно увеличенной разрядности.

Для уве­личения числа самих хранимых слов (рис. 1.49, б ) адресные входы микросхем включают параллельно и рассматривают как младшие разряды нового, расширенного адреса. Добав­ленные старшие разряды нового адреса поступают на де­кодер, который по входам Е выбирает одну из микросхем. При малом числе микросхем дешифрацию старших разря­дов можно делать на конъюнкции разрешающих входов са­мих ПЗУ. Выходы одноименных разрядов при увеличении числа хранимых слов должны объединяться с помощью функций ИЛИ. Специальных элементов ИЛИ не требуется, если выходы микросхем ПЗУ выполнены или по схеме от­крытого коллектора для объединения методом монтажного ИЛИ, или по схеме буфера с тремя состояниями, допуска­ющего непосредственное физическое объединение выходов.

Выходы микросхем ПЗУ обычно инверсные, инверсным часто бывает и вход Е. Наращивание ПЗУ может потребовать введения буферных усилителей для увеличе­ния нагрузочной способности некоторых источников сигна­лов, учета вносимых этими усилителями дополнительных задержек, но в общем при сравнительно небольших объемах памяти, что типично для многих ЦУ (например устройств автоматики), наращива­ние ПЗУ обычно не порождает принципиальных проблем.

Рис. 1.49. Увеличение числа разрядов хранимых слов при параллельном включении входов микросхем и увеличении числа хранимых слов при включении параллельно адресных входов микросхем

ЭВМпредставляет собой комплекс технических средств, построенный на электронных элементах и предназначенный для автоматической обработки информации.

Основной конструктивной особенностью современныхЭВМ является модульный принцип их построения.

Модульный принцип заключается в блочной структуре построения ЭВМ. Модули ЭВМ представляют собой группы устройств, конструктивно объединенные в отдельные блоки.

Под модулем понимается автономное, логически и конструктивно законченное устройство, которое выполняет определенные функции в вычислительном процессе.

Модульная конструкция позволяет сделать ЭВМ компактной, существенно улучшает сервис обслуживания ЭВМ, а также позволяет наращивать её производительность и обеспечивает расширение функциональных возможностей вычислительных систем путем подключения различных внешних устройств.

В состав ЭВМ могут входить модули следующих групп устройств:

1) устройств центрального процессора;

2) запоминающие устройства (оперативная и постоянная память, а также внешних запоминающих устройств - НЖМД, НГМД, НМЛ, CD-ROM и др.);

3) устройств ввода-вывода (клавиатура, дисплей, принтер, сканер, графопостроитель);

4) устройств сопряжения (адаптеры, контроллеры) и др.

Центральный процессор (ЦП) является основной частью ЭВМ и представляет собой совокупность обрабатывающих и управляющих устройств, включая: арифметико-логическое устройство (АЛУ), устройство управления (УУ) и регистровую процессорную память (РПП).

Центральный процессор:

· управляет ходом выполнения программы, определяя последовательность выполнения её команд;

· выполняет арифметические и логические операции, предусмотренные программой;

· организует взаимодействие и автоматическую работу всех устройств ЭВМ.

В компьютерной технике разновидностью центрального процессора является микропроцессор, выполненный на базе БИС или СБИС.

Запоминающие устройства ЭВМ (память) предназначены для приёма, хранения и выдачи информации. Имеется несколько уровней памяти. Каждый уровень памяти имеет определенный объём (емкость) и свое быстродействие.

Емкость памяти запоминающего устройства (ЗУ) определяется максимально возможным количеством кодов чисел и команд, одновременно хранящимся в ЗУ. Емкость памяти измеряется в Кбайтах, Мбайтах и Гбайтах.

Быстродействие памяти характеризуется временем, необходимым для поиска, записи или считывания информации. Как правило, чем больше ёмкость памяти, тем ниже её быстродействие.

По быстродействию выделяют следующие уровни памяти: сверхоперативную, оперативную, постоянную, буферную и внешнюю.

Сверхоперативная память – это регистровая процессорная память (РПП) служит для временного хранения отдельных операндов и команд, обрабатываемых в данный момент времени.

Оперативная память (RAM) представляет собой оперативное запоминающее устройство (ОЗУ), которое служит для приема, хранения и выдачи информации, непосредственно участвующей в вычислительном процессе. ОЗУ характеризуется высоким быстродействием и сравнительно небольшой емкостью памяти. Эта память энергозависима. При выключении питания вся информация ОЗУ стирается.

Постоянная память (ROM) представляет собой постоянное запоминающее устройство (ПЗУ), которое служит для постоянного хранения неизменяемой программной и справочной информации. ПЗУ позволяет оперативно только считывать без изменения хранящуюся в нем информацию.

Оперативная и постоянная памяти образуют основную память ЭВМ.

Внешняя память представляет собой внешние запоминающие устройства (ВЗУ), которые служат для длительного хранения больших массивов данных и программ. ВЗУ отличаются большой емкостью и сравнительно небольшим быстродействием. К устройствам внешней памяти относятся накопители на жестких и гибких магнитных дисках (НЖМД и НГМД), накопители на магнитной ленте (НМЛ - стримеры), а также накопители на лазерных оптических дисках (CD-ROM, CD-RW) и др.

В процессе обработки информация в виде набора данных и команд различных программ из ВЗУ предварительно переписывается (загружается) в ОЗУ отдельными порциями и в последовательности, необходимой для решения конкретной задачи. Процессор обрабатывает загруженную в ОЗУ информацию и последовательно по командам программ выполняет различные действия.

Для устранения несоответствия между скоростями работы сверхоперативной процессорной памятью и ОЗУ, а также между скоростями работы быстродействующего ОЗУ и медленнодействующих ВЗУ в ЭВМ предусмотрена буферная или Кэш-память нескольких уровней.

Устройства ввода-вывода обеспечивают ввод информации в ЭВМ и её вывод. К этим устройствам относятся: клавиатура, видеомонитор (дисплей), принтер, сканер, графопостроитель и др. Имеются также устройства указания ввода-вывода. К ним относятся различные манипуляторы – мышь, джойстик, трекбол и световое перо.

Устройства сопряжения служат для организации взаимодействия центрального процессора с различными устройствами и модулями, входящими в состав ЭВМ. К ним относят системную шину, обеспечивающую сопряжение и связь всех устройств ЭВМ, а также адаптеры и контроллеры различных устройств.

Первый серийный персональный компьютер (ПК ), представляющий собой персональную ЭВМ, появился в 1975г. в США. Появление персональных компьютеров определилось необходимостью приблизить ЭВМ непосредственно к пользователю.

Персональный компьютер представляет собой комплекс взаимосвязанных технических устройств, каждое из которых выполняет определенную функцию.


Функционально-структурная схема ЭВМ представлена на рисунке 6:

Рис. 6. Функционально-структурная схема ЭВМ

Основными частями компьютера являются:

1. Системный блок.

2. Дисплей или видеомонитор.

3. Клавиатура.

Они составляют базовый комплект, т.е. наименьший набор устройств, без которого работа с компьютером невозможна.

Системный блок является сердцем машины и ее мозгом. В корпусе системного блока находятся: материнская плата, микропроцессор, оперативное запоминающее устройство (ОЗУ), постоянное запоминающее устройство (ПЗУ), внешние запоминающие устройства (ВЗУ), устройства сопряжения, блок питания и другие электронные устройства.

Микропроцессор является ядром компьютера. Он организует хранение и выполнение программ, управляет ходом вычислений, выполняет арифметические и логические операции, управляет работой всех блоков машины.

Конструктивно микропроцессор выполняется на базе БИС или СБИС в виде одного кристалла. Важнейшей характеристикой микропроцессора является его быстродействие или производительность - это среднее число команд, выполняемых в единицу времени. Быстродействие определяется тактовой частотой, которая достигает в настоящее время: 1400-1700 мгц.

Структура микропроцессора и его элементная база являются признаками, определяющими поколение компьютеров. Первые процессоры работали на базе микропроцессоров фирмы Intel под номером 8088, затем появились микропроцессоры 80286, 80386 и 80486. В настоящее время выпускаются микропроцессоры типа Pentium, Celeron, AMD и др. Название персональных компьютеров определяется типом микропроцессора и его тактовой частотой.

Оперативное запоминающее устройство (ОЗУ) – предназначено для записи и временного хранения информации, непосредственно используемой при выполнении программ в процессе вычислений. ОЗУ построено на БИС или СБИС. Объём современных ОЗУ достигает 256-512 Мбайт.

Постоянное запоминающее устройство (ПЗУ) – предназначено для хранения программ, справочных таблиц и другой постоянной информации. Выключение компьютера не влияет на информацию, хранящуюся в ПЗУ.

Внешние запоминающие устройства (ВЗУ) служат для долговременного хранения больших массивов информации, непосредственно не используемых в процессе вычислений, и представляют собой накопители на жестком магнитном диске (типа винчестер), объём памяти которого может достигать сотни Гбайт, а также на гибких магнитных дискетах, с емкостью памяти 1,4 Мбайта. Имеются также накопители на лазерных оптических компакт-дисках (CD-ROM или CD-RW), объём памяти которых достигает сотни Мбайт.

К устройствам сопряжения относятся: системная магистраль для передачи данных, а также различные контроллеры или адаптеры для управления внешними устройствами ввода-вывода.

Блок питания служит для подачи напряжения в электрические цепи компьютера.

Дисплей или видеомонитор предназначен для отображения на экране информации, вводимой пользователем, и для вывода информации в процессе работы ПК. Работает как телевизор. В настоящее время распространены цветные мониторы типа EGA, VGA и SVGA.

Клавиатура служит для ввода информации и управления работой ПК. На клавиатуре расположены 101-104 клавиши, которые подразделяются на пять групп (полей):

1. Алфавитно-цифровые и знаковые клавиши для ввода текста и чисел (аналогичные клавишам печатной машинки).

2. Клавиши для управления курсором ( , Home, End, Page UP и Page Down).

3. Служебные управляющие клавиши для переключения регистров (Shift, Caps Lock), запуска (Enter) и прерывания работы программ (Esc), вывода содержимого экрана на печать (Print Scrn), перезагрузки операционной системы (Ctrl+Alt+Delete) и др.

4. Функциональные клавиши (F1 – F12) для сервисного обслуживания программ.

5. Вспомогательное поле цифровых клавиш и клавиш управления курсором.

Кроме базовых устройств компьютера в его комплект могут входить различные дополнительные периферийные устройства, включая принтер, сканер, модем, стриммер, плоттер (графопостроитель), различные манипуляторы и др.

Принтер - внешнее устройство, служащее для распечатки текстов программ, документов, результатов вычислений. Принтеры существуют следующих типов: матричные, струйные и лазерные. Матричные принтеры наиболее дешевые, но наличие множества механических частей снижает их надежность в работе.

Более высокое качество печати обеспечивают струйные принтеры, которые особенно удобны для вывода цветных изображений. Но струйные принтеры требуют тщательного ухода.

Лазерные принтеры самые дорогие. Эти принтеры дают почти типографское качество печати. Скорость печати у них в 4-5 раз выше, чем у матричных и струйных. Лазерные принтеры самые надежные.

Сканер используется для считывания и ввода графической и текстовой информации. При сканировании графической и текстовой информации их изображение автоматически преобразуется в электронный вид.

Модем(модулятор-демодулятор) служит для обеспечения связи между компьютерами с помощью телефонной линии, преобразуя цифровую информацию компьютера в электрические сигналы и наоборот.

Стриммер используется для долговременного хранения информации на магнитной ленте.

Плоттер, или графопостроитель, служит для вывода графической информации.

Манипуляторы представляют собой устройства указания ввода-вывода. К ним относятся – мышь, джойстик, трекбол и световое перо.

Кроме того, в состав компьютера могут входить также мультимедийные устройства, которые обеспечивают звуковое и музыкальное сопровождение программ. В состав «мультимедиа» входят звуковая и видеокарта, звуковые колонки (Sound blaster) и программное обеспечение.

Вопрос 3. Классификация ПК

Персональный компьютер относится к классу микроЭВМ и является машиной индивидуального пользования. Это общедоступный и универсальный вычислительный инструмент, многократно повышающий производительность интеллектуального труда специалистов различного профиля.

С учетом назначения и функциональных возможностей персональные компьютеры можно разбить на три группы: бытовые, общего назначения и профессиональные.

Бытовые компьютеры предназначены для массового использования в домашних условиях, как для развлечений (видеоигр), так и для обучения, тренировки и управления бытовой техникой. Этот тип компьютеров достаточно дешевый, надежный и имеет, как правило, простейшую базовую конфигурацию с минимальным набором периферийных устройств.

Компьютеры общего назначения применяются для решения задач научно-технического и экономического характера, а также для обучения и тренировки. Они размещаются на рабочих местах предприятий, учреждений, фирм, в магазинах, на складах и пр.

Машины этого класса имеют достаточно высокопроизводительный микропроцессор, сравнительно большую емкость оперативной и внешней памяти, а также широкий набор периферийных устройств и средств для работы в составе компьютерных сетей.

Этот класс ЭВМ получил наибольшее распространение на мировом рынке.

Профессиональные компьютеры используются в научно-производственной сфере для решения сложных информационных и производственных задач, требующих высокого быстродействия, эффективную передачу больших массивов информации, большую оперативную и внешнюю память. Они могут быть многопроцессорными, способными конкурировать с большими ЭВМ.

Потребителями этого класса компьютеров являются, как правило, профессионалы-программисты и поэтому их программное обеспечение должно быть достаточно богатым и гибким, включая всевозможные инструментальные программные средства.

По конструктивному исполнению компьютеры подразделяются на настольные и портативные .

К портативным относят наколенные (LAPTOP), блокнотные (NOTEBOOK) и карманные (POCKET) или ручные (HANDHELD) компьютеры.

Наколенные (LAPTOP) компьютеры имеют размеры чемодана-дипломата с весом 5-10 кг. В настоящее время их практически не выпускают.

Блокнотные (NOTEBOOK) компьютеры весом не более 2-4 кг имеют размер стандартного листа бумаги А4 (210х297 мм) и толщину 2-5см. В настоящее время блокнотные компьютеры могут иметь такие же возможности, что и настольные, хотя стоимость их существенно выше.

Карманные (POCKET) или ручные (HANDHELD) компьютеры весом около500г играют роль электронной записной книжки.


Доброго времени суток.

Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.


Расшифровка и объяснение

Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится - память только для чтения.

Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?

  • Во-первых, на ней хранятся неизменяемые данные, заложенные разработчиком при изготовлении техники, то есть те, без которых ее работа невозможна.
  • Во-вторых, термин «энергонезависимый» указывает на то, что при перезагрузке системы данные с нее никуда не деваются, в отличие от того, как это происходит с оперативной памятью.

Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.

Примеры

Постоянная память в компьютере - это определенное место на материнской плате, в котором хранятся:

  • Тестовые утилиты, проверяющие правильность работы аппаратной части при каждом запуске ПК.
  • Драйвера управления главными периферийными девайсами (клавиатурой, монитором, дисководом). В свою очередь, те слоты на материнской плате, в функции которых не входит включение компьютера, не хранят свои утилиты в ROM. Ведь место ограничено.
  • Прогу начальной загрузки (BIOS), которая при включении компа запускает загрузчик операционной системы. Хотя нынешний биос может включать ПК не только с оптических и магнитных дисков, но и с USB-накопителей.

В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.

В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая - диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Виды

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

  • Первая буква добавляет слово «programmable» (программируемое). Это значит, что пользователь может один раз самостоятельно прошить устройство.

  • Еще две буквы впереди скрывают под собой формулировку «electrically erasable» (электрически стираемое). Такие ПЗУ можно перезаписывать сколько угодно. К этому типу относится флеш-память.

В принципе это всё, что я хотел сегодня до Вас донести.

Буду рад, если вы подпишетесь на обновления и будете заходить чаще.

Постоянные запоминающие устройства (ПЗУ) в микропроцессорных вычислительных системах слу­жат для хранения программ и другой неизменяемой информации. Важное преимущество ПЗУ по сравне­нию с ОЗУ - сохранение информации при выключе­нии питания. Стоимость бита хранимой в ПЗУ инфор­мации может быть почти на порядок ниже, чем в ОЗУ. Постоянные ЗУ могут быть реализованы на основе различных физических принципов и элементов и отличаются способом занесения информации, крат­ностью занесения, способом стирания.

В настоящее время применяются следующие виды ПЗУ: программируемые на заводе-изготовителе или масочные ПЗУ (МПЗУ); программируемые пользова­телем ; перепрограммируемые ПЗУ . Первые два вида ПЗУ допускают только однократное про­граммирование, третий вид ПЗУ позволяет изменять хранимую в нем информацию многократно.

Рассмотрим подробнее каждый из типов ПЗУ.

Программируемые масочные ПЗУ про­граммируются их изготовителем, который по подго­товленной пользователем информации делает фото­шаблоны, с помощью которых заносит эту информа­цию в процессе производства на кристалл ПЗУ. Этот способ самый дешевый и предназначен для крупносе­рийного производства ПЗУ.

Масочные ПЗУ строятся на основе диодов, бипо­лярных и МДП-транзисторов. В диодных ПЗУ диоды включены в тех пересечениях матрицы, которые соот­ветствуют записи «1», и отсутствуют в местах, где должен быть записан «0». Внешние цепи управления диодных ПЗУ очень просты. Так как диодная матри­ца представляет собой элемент с гальваническими связями, то выходные сигналы имеют ту же форму, что и входные. Таким образом, если на входы пода­ются напряжения постоянных уровней, то и на выхо­дах уровни будут также постоянными, поэтому отпа­дает необходимость в выходном регистре для хране­ния информации. Масочные ПЗУ на биполярных и МДП-транзисторах также строятся в виде матриц. Постоянные ЗУ на МДП-транзисторах несколько проще в изготовлении, чем биполярные.

Масочные ПЗУ характеризуются большой надеж­ностью, но при их изготовлении возникает ряд не­удобств для заказчика и для изготовителя. Велика номенклатура ПЗУ и мала их тиражность, поэтому от изготовителя требуются повышенные затраты на фотошаблоны, что увеличивает стоимость ПЗУ. От­сутствует возможность оперативно изменять инфор­мацию в ПЗУ без изготовления новой ИС, что особен­но неудобно на этапе отработки программ системы.

Программируемые пользователем ПЗУ являются более универсальными и, следователь­но, более дорогими приборами. Они представляют собой матрицы биполярных приборов, связи которых с адресными и разрядными шинами разрушаются при занесении на специальных программирующих устрой­ствах соответствующих кодовых комбинаций. Эти устройства вырабатывают напряжения, необходимые и достаточные для пережигания плавких перемычек в выбранных запоминающих элементах ПЗУ. Воз­можность программирования пользователем сделала ПЗУ этого типа чрезвычайно удобными при разра­ботке микроЭВМ.

Наибольшее распространение получили ПЗУ с ультрафиолетовым стиранием серии К573, с плавки­ми перемычками серии К556 и К541, с электрическим стиранием и записью информации серий К558, К1601, К1609.

Во всех перечисленных типах запоминающих уст­ройств элементы, хранящие информацию, также рас­полагаются в виде ячеек двумерной матрицы. Каж­дая ячейка может хранить один бит информации, т. е. быть в состоянии логического «0» или «1». Физически на кристалле микросхемы ПЗУ ячейки располагаются на пересечении «словарных линий», идущих от де­шифратора, и разрядных линий, перпендикулярных словарным, которые подсоединяются ко входам муль­типлексора. На дешифратор и мультиплексор пода­ются разряды адреса. При подаче адреса на дешиф­ратор возбуждается одна из словарных линий и все запоминающие элементы, расположенные на ней, па­раллельно выдают хранящуюся в них информацию на все разрядные линии. Выборка нужного числа би- тов для подачи на выход микросхемы ЗУ осуществляется мультиплексором. В зависимости от организации микросхемы мультиплексор и дешифратор могут иметь различную разрядность. Например, микросхема емкостью (2X8) К бит может быть организована как матрица размером 128Х128, что означает использование внутри микросхемы дешифратора «1 - из-128» для возбуждения словарных линий и восьми мультиплексоров «16 - в - 1» для считывания разрядных Линий.

С учетом топологических и технологических особенностей каждого типа микросхем можно произвести деление матрицы запоминающих ячеек на блоки других размеров. Подобное построение запоминающих устройств является общим для всех типов. Отличия между ними - в организации запоминающих ячеек, располагающихся на пересечении «словарной» и «разрядных» линий.

Микросхемы с плавкими перемычками, выполненные по ТТЛ- или ТТЛШ-технологии, применяются там, где необходимо высокое быстродействие. На их основе создается память микропрограмм для микропроцессорных устройств с разрядно-модульной архитектурой (серия К589 й др.), устройства перемножения и функционального преобразования сигналов. Запоминающим элементом в микросхемах данного типа является я-р-/г-транзистор, подсоединенный базой к «словарной линии», коллектором к (Лъ а эмиттером, через плавкую перемычку, к «разрядной» линии. В качестве плавкой перемычки используется поликристаллический кремний или нихром, напыленные при изготовлении микросхемы.

Протекание тока программирования через нихро-мовую перемычку вызывает частичное испарение и окисление нихрома, это приводит к разрыву перемычки. Однако по истечении некоторого времени такая перемычка можёт восстановиться, поэтому - для повышения надежности программирования проводят электротермотренировку микросхем. Подобного недостатка лишены микросхемы с перемычками из поликристаллического кремния, в которых процесс необратимого перехода поликремния из проводящего состояния в непроводящее происходит под действием нагрева, вызванного протеканием тока.

При возбуждений «словарной линии» будут активизироваться (переходить в состояние «1») лишь те «разрядные» линии, к которым подсоединены транзисторы с невыплавленными перемычками. Таким образом, процесс программирования для микросхем данного типа сводится к удалению плавких перемычек в необходимых местах.

Схемы поддержки режима программирования обычно располагаются на самом кристалле микросхемы, и процесс программирования протекает следующим образом. На адресные входы подается адрес выбранной ячейки. Напряжение питания микросхемы повышается до напряжения программирования, необходимого для создания тока, достаточного для выплавления перемычки. Далее на выходах микросхемы путем задания тока указываются те разряды слова, -в которых будут выплавляться перемычки. В процессе занесения информации в микросхему необходимая последовательность подачи импульсов напряжения на определенные выводы обеспечивается программирующим устройством, которое параллельно контролирует правильность программирования, считывая информацию из ПЗУ. Постоянные ЗУ данного типа допускают только однократную запись информации в ячейку.

Микросхемы, в которых информация стирается с помощью ультрафиолетового излучения (УФППЗУ), имеют: возможность многократного программирования, достаточно малое время выборки и энергопотребление, большую емкость. Это делает их более предпочтительными для применения в качестве памяти микропроцессорных систем с сохранением информации после отключения питания. Микросхемы данного типа используются в блоках ПЗУ большинства микро- ЭВМ.

Запоминающим элементом в ПЗУ с УФ-стиранием является МОП-транзистор, расположенный на пересечении соответствующих «словарной» и «разрядной» линий. Информация о содержимом данной ячейки хранится в виде заряда на втором (плавающем) за­творе МОП-транзистора. Затвор называется плавающим, если он размещен между управляющим затво­ром данного транзистора и его каналом и окружен высокоомным диэлектриком.

Перепрограммируемые ПЗУ - это ПЗУ с изменяемым содержимым, на затворах матрицы МОП-транзисторов длительное время могут храниться заряды, образующие заданный код. Все перепрограммируемые ПЗУ представляют собой МОП-приборы.

При необходимости в перепрограммировании микросхемы предварительно записанную информацию стирают ультрафиолетовым светом через прозрачное кварцевое окошко на поверхности корпуса микросхемы. Попадая на плавающий затвор и выбивая из него фотоэлектроны, УФ-излучение разряжает плаваю­щий затвор МОП-транзистора. Время сохранения информации в микросхемах ПЗУ данного типа определяется качеством призатворного диэлектрика и для современных микросхем составляет десять лет и более.

Микросхемы ПЗУ с электрическим стиранием информации популярны у разработчиков микропроцессорной техники благодаря возможности быстрого сти­рания и записи, большим допустимым числом циклов перезаписи информации (10000 раз и более). Однако они достаточно дорогие и сложные по сравнению с микросхемами ПЗУ с УФ-стиранием и поэтому уступают последним по степени использования в микропро­цессорной аппаратуре.

Основу запоминающей ячейки в ПЗУ с электрическим стиранием составляет МОП-транзистор с плавающим затвором, такой же, как и в ПЗУ с УФ-стиранием. Но в микросхемах данного типа технологическими методами обеспечена возможность обратного туннели- рования, т.е. отбора электронов с плавающего затвора, что позволяет выборочно стирать занесенную информацию.

Похожие публикации